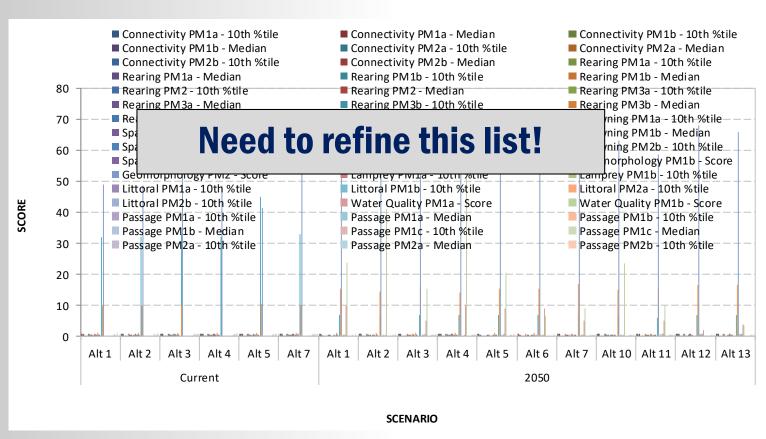
Cowichan Water Use Plan

Public Advisory Group
Meeting # 3


March 8, 2018

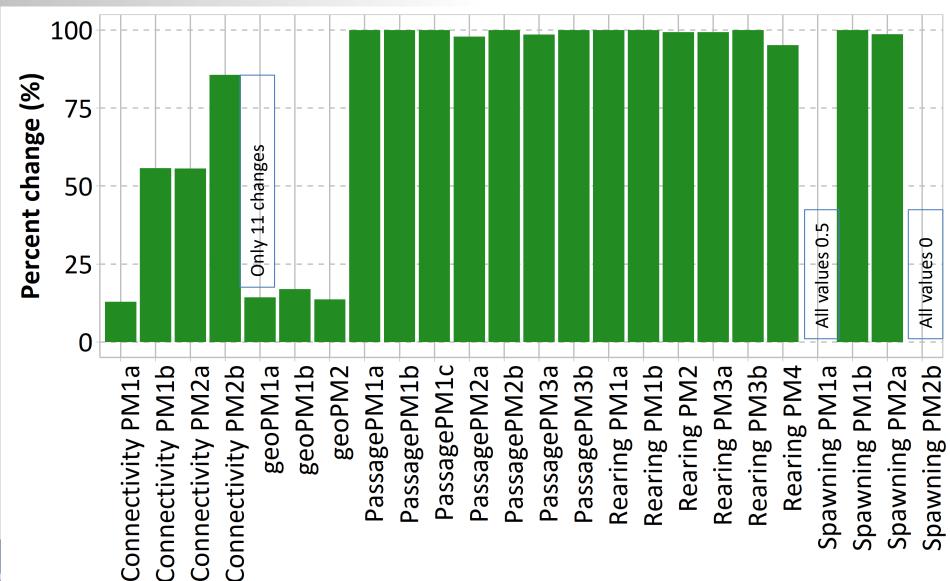
Short-listing environmental PMs

Short-listing PMs improves decision-making

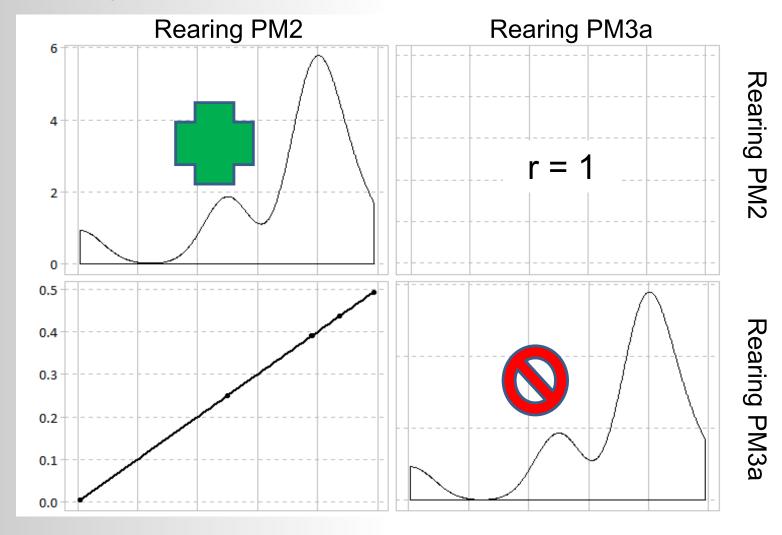
Short-listing environmental PMs

Short-listing process

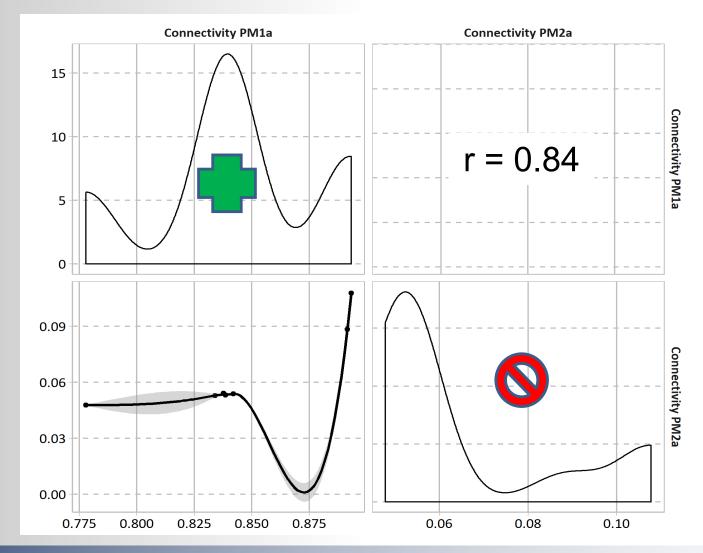
- 1. Assess sensitivity
- 2. Assess redundancy


Iterative process with technical review

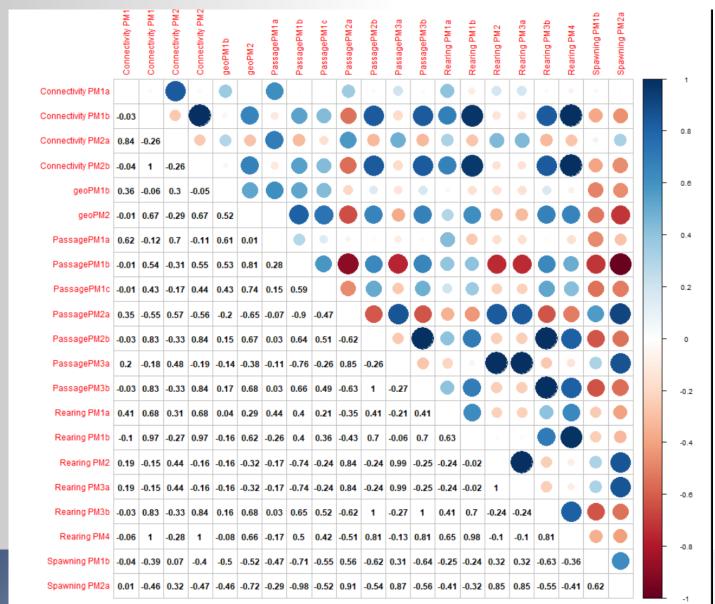
We also considered:


- Desire to include different PM groups
- Conservation priorities for different species

Step 1, Sensitivity: $max - min)/max \times 100$



Step 2, redundancy



Step 2, redundancy

Step 2, redundancy

Removed by sensitivity

- Geo 1a
- Spawning 1a, 1b

Removed by redundancy

- Connectivity 1b, 2a, 2b
- Passage 2a, 2b, 3a, 3b
- Rearing 1b, 3a, 4
- Spawning 2a

Keep (round 1)

- Connectivity 1a
- Geomorphology 1b, 2
- Passage 1a, 1b, 1c
- Rearing 1a, 2, 3b
- Spawning 1b

Revised Performance Measure subset

- Connectivity 1a (juvenile CH + CO, April 1 June 15)
- Passage 1b (adult summer CH, April 1 July 31)
- Passage 1c (adult fall CH, Sept 1 November 30)
- Rearing 1b (ST parr, March 1 Dec 31)
- Rearing 2 (CH fry, March 1 April 30)
- Spawning 1b (early ST incubation, Jan 15 March 31)

Shortlist Cowichan Lake PMs

Status of Lamprey PM

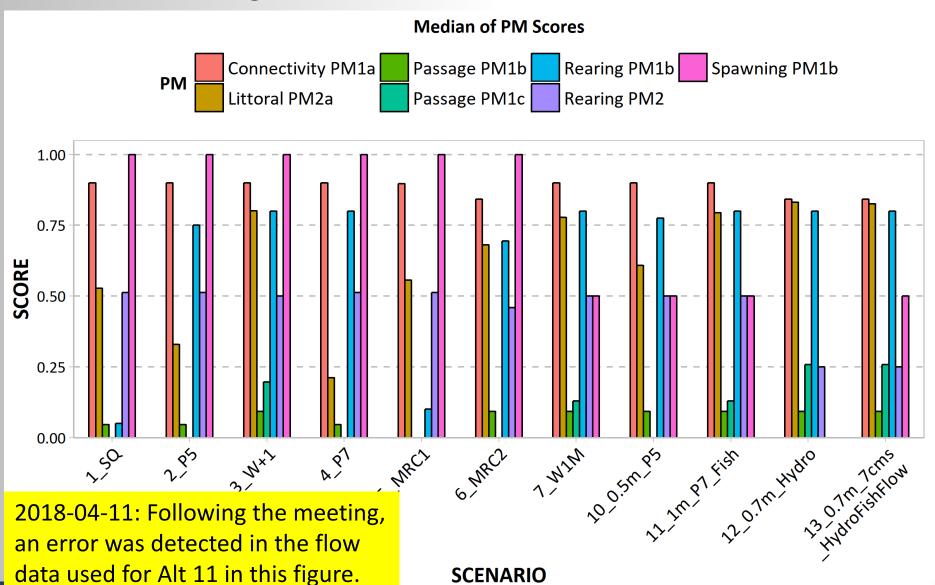
- Vancouver Lamprey is an important consideration for the ARTSG
- Vancouver Lamprey is endemic to the upper Cowichan watershed and has a SARA Status of Schedule 1, Threatened
- Larval ammocoetes rear in shallow habitats that include tributary fans, for up to 7 years
- Our knowledge of the ecology of this species is poor
- Lake drawdown is assumed to have an adverse effect on the rearing life stage
- We have insufficient bathymetry data (and biological knowledge) to develop a quantitative PM for lamprey
- Effects to lamprey have been considered qualitatively by reviewing minimum modelled lake elevations for alternatives

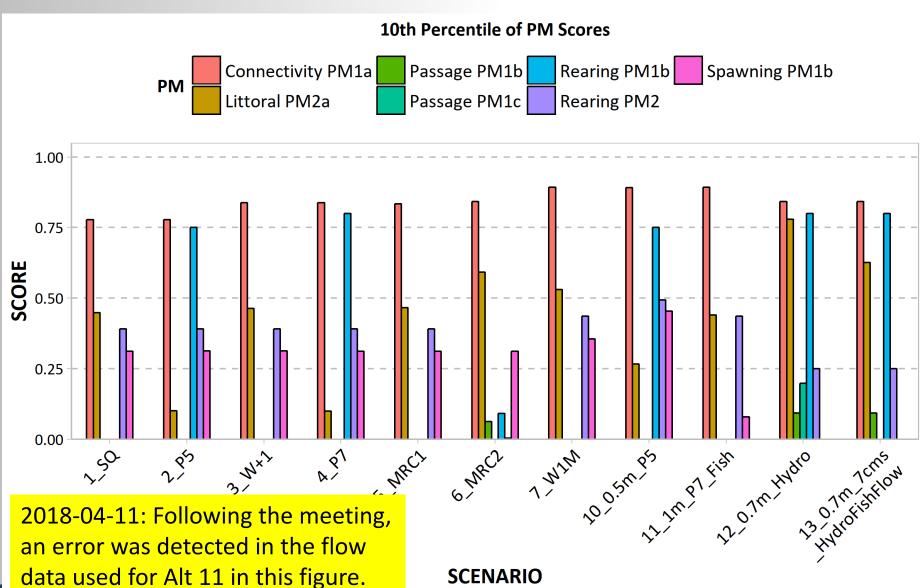
Shortlist Cowichan Lake PMs

- Connectivity (lake tributaries)
- Water quality
- Biology (lamprey) Qualitative
- Biology (littoral rearing habitats) Relative littoral productivity
- Wildlife and riparian

Shortlist of Environmental PMs

River PMs


- Connectivity 1a (juvenile CH + CO, April 1 June 15)
- Passage 1b (adult summer CH, April 1 July 31)
- Passage 1c (adult fall CH, Sept 1 November 30)
- Rearing 1b (ST parr, March 1 Dec 31)
- Rearing 2 (CH fry, March 1 April 30)
- Spawning 1b (early ST incubation, Jan 15 March 31)


Lake PMs

- Littoral 2a (juvenile salmonids, April 1 Nov 5)
- Lamprey (qualitative)

				Jai	า		F	eb			Ma	ır		Α	۱pr			M	lay			Ju	n			Jul			Αι	Jg			Sep)		(Oct			Ν	lov			De	€C	
			1	2	3	4 1	1 2	3	4	1	2	3 4	4 1	1 2	3	4	1	2	3	4	1	2	3	4	1 2	2 3	4	1	2	3	4	1 :	2 :	3 4	4 1	. 2	2 3	3 4	1	2	3	4	1	2	3	4
	Connectivity PM1a	CH, CO (juv))	x x	X	Х	х	х	Х	х	х	х																								
	Passage PM1b	CH (sum))	x x	X	Х	х	х	Х	х	х	х	х	х	x >	(X	X																			
River	Passage PM1c	CH (fall)																														X :	x	x	х	X	()	κx	х	х	Х	X				
KIVEI	Rearing PM1b	ST (parr)								х	X	x x	x >	x x	X	Х	х	х	Х	х	х	х	х	х	x >	(X	X	х	Х	х	х	X :	x	x	х	X	()	κx	х	х	Х	Х	х	х	Х	Χ
	Rearing PM2	CH (fry)								х	X	x x	x >	x x	X	Х																														
	Spawning PM1b	ST (incub)			х	x >	Χ	x	Х	х	X	x x	x																																	
Lake	Littoral PM2a	juv salmonids)	x x	X	Х	х	Х	Х	х	х	Х	х	х	x >	(X	X	х	X	Х	х	X :	x	x	х	X	()	κx	х							
Lake	Lamprey	qualitative																																												
			1	2	3	4 1	1 2	3	4	1	2	3 4	4 1	1 2	3	4	1	2	3	4	1	2	3	4	1 2	2 3	4	1	2	3	4	1	2	3 4	4 1	. 2	2 3	3 4	1	2	3	4	1	2	3	4
				Jai	า		F	eb			Ma	ır		A	۱pr			M	lay			Ju	n			Jul			Αι	Jg			Sep	5		(Oct	t		Ν	lov			De	ec_	

FCETSH

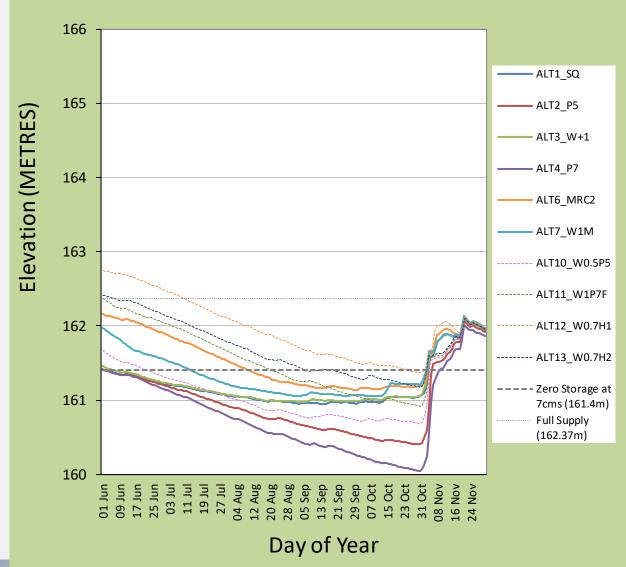
River Connectivity – least sensitive. In a median year, values for alts. are similar to the status quo. In a dry year, #7, #10 and #11 are best (focus on providing spring flows).

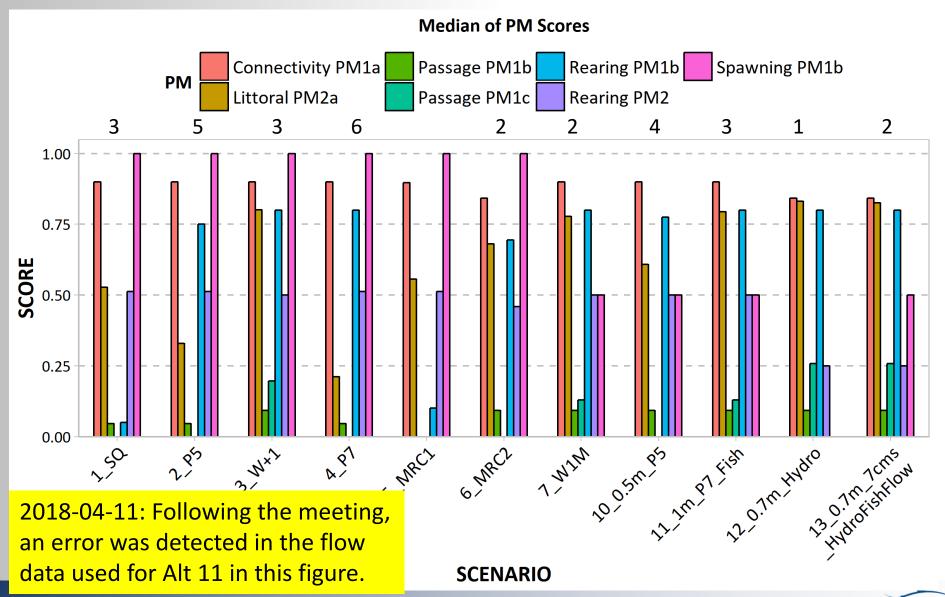
River Fish Passage – values are generally low, indicating significant biological constraints for adult Chinook Salmon passage in the future. #12 and #13 are generally best.

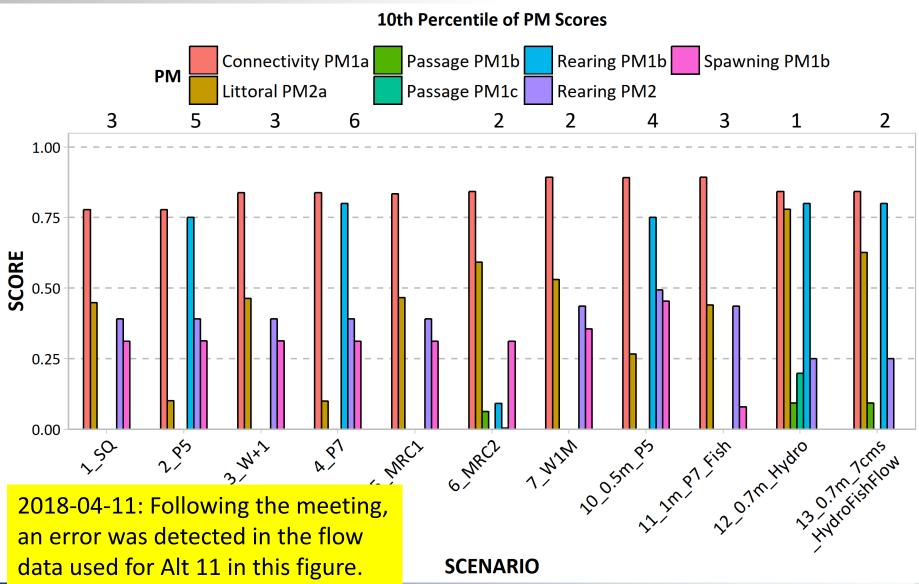
River Rearing

- For PM1b (ST parr), all alts. are substantially better than the status quo in the median year, except for #5. In a dry year, #2, #3, #4, #10, #12 and #13 are best. These include pumps (except #12).
- For PM2 (CH fry), all alts. are better than the status quo. Values are lower for #12 and #13 because they involve increasing lake storage in March. Also, #6 fails in a dry year.

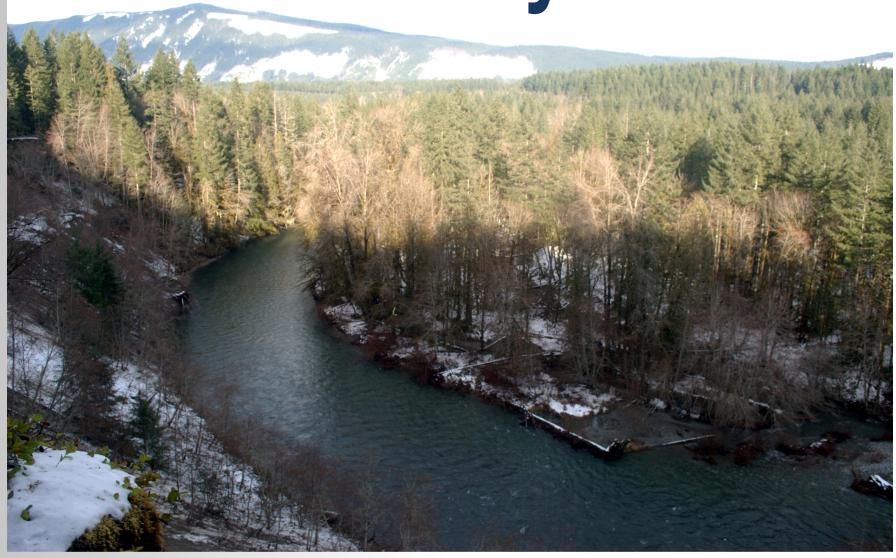
River Spawning – **#11** to **#13** are worse that the status quo for both the median and the **10**th %iles. **#12** is particularly poor (increasing lake storage on March **1**, during ST incubation).


Lake Littoral: #2 and #4 are consistently worse that the status quo (involve pumps). #10 is also poor in a dry year.


Lamprey (qualitative)


- Minimum annual lake level used to make a qualitative assessment
- For the 10th %ile, the minimum lake level is lowest for #4
- #4, #2, #10, and #11 (just), are worse than the status quo
- #12 performs best
- Impacts are likely greatest for options with pumping but no increased lake storage

Cowichan, Elevation, 10th Percentile



Thank you!

Month	Target (m³/s)	Min. (m ³ /s)	Alt. 12	New Alt.?
April (1-15)	40	25	15	20
April (16-30)	35	25	15	20
May (1-15)	35	20	7	1 5
May (16-31)	30	20	7	15
June (1-15)	30	15	7	7
June (16-30)	30	7	7	6
July (1-15)	10	7	7	5
July (16-31)	10	7	7	5
Aug (1-15)	10	7	7	5
Aug (16-31)	10	7	7	5
Sept (1-15)	10	7	7	5
Sept (16-30)	10	7	7	5
Oct (1-15)	15	7	7	5*
Oct (16-31)	15	7	7	5*
SUM	290	168	114	123
SUM (M m ³)	381.5	221.3		

(* Implement passage flows if available)

